First Integrals and the Residual Solution for Orthotropic Plates in Plane Strain or Axisymmetric Deformations

نویسنده

  • Yihan Lin
چکیده

Two classes of exact solutions are derived for the equations of three dimensional linear orthotropic elasticity theory governing flat (plate) bodies in plane strain or axisymmetric deformations. One of these is the analogue of the Levy solution for plane strain deformations of isotropic plates and is designated as the interior solutions. The other complementary class correspond to the Papkovich-Fadle Eigenfunction solutions for isotropic rectangular strips and is designated as the residual solutions. For sufficiently thin plates, the latter exhibits rapid exponential decay away from the plate edges. A set of first integrals of the elasticity equations is also derived. These first integrals are then transformed into a set of exact necessary conditions for the elastostatic state of the body to be a residual state. The results effectively remove the asymptoticity restriction of rapid exponential decay of the residual state inherent in the corresponding necessary conditions for isotropic plate problems. The requirement of rapid exponential decay effectively limits their applicability to thin plates. The result of the present paper extend the known results to thick plate problems and to orthotropic plate problems. They enable us to formulate the correct edge conditions for twodimensional orthotropic thick plate theories with stress or mixed edge data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

Stress-Strain Behaviour of Completely Decomposed Granite in Both Triaxial and Plane Strain Conditions

Most of the field problems in geotechnical engineering are in three dimensional state or close to a plane strain condition. Strength and deformation properties of soils in plane strain condition are considerably different from those in an axisymmetric condition. Many researchers have investigated the behaviour of soils under a plane strain condition. However, most of the previous studies have c...

متن کامل

Torsional analysis of an orthotropic long cylinder weakened by multiple axisymmetric cracks

Abstract: The solution to problem of an orthotropic long cylinder subjected to torsional loading is first obtained by means of separation valuables. The cylinder is twisted by two lateral shear tractions and the ends of the cylinder surface of the cylinder are stress-free. First, the domain under consideration is weakened by an axisymmetric rotational Somigliana ring dislocation. The dislocatio...

متن کامل

Small Scale Effect on the Vibration of Orthotropic Plates Embedded in an Elastic Medium and Under Biaxial In-plane Pre-load Via Nonlocal Elasticity Theory

In this study, the free vibration behavior of orthotropic rectangular graphene sheet embedded in an elastic medium under biaxial pre-load is studied. Using the nonlocal elasticity theory, the governing equation is derived for single-layered graphene sheets (SLGS). Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. To verify the a...

متن کامل

Dynamic Stiffness Method for Free Vibration of Moderately Thick Functionally Graded Plates

In this study, a dynamic stiffness method for free vibration analysis of moderately thick function-ally graded material plates is developed. The elasticity modulus and mass density of the plate are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents whereas Poisson’s ratio is constant. Due to the variation of the elastic properties through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001